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The return to equi!ibrium is investigated for one-dimensional (one-sided) chain 
of the X Y  model. The initial state is taken to be the Gibbs state for the sum of 
the Hamiltonian for the X Y  model of length N and a perturbation by a uniform 
magnetic field acting on the first n sites. The time evolution under the unper- 
turbed X Y  model Hamiltonian is studied for the expectation value of the 
average magnetization of the same first n sites in the infinitely extended system 
(i.e., after taking the limit N o  0e). It is found that the return to equilibrium 
occurs for a finite-size perturbation (i.e., for a fixed n), while it does not occur 
for an infinite-size perturbation (i.e., the limit n o oe is taken simultaneously as 
N o  oe). A certain twisted asymptotic Abelian property of the X Y  model is 
shown and used as a technical tool. 

KEY WORDS: X Y  model; ergodic; return to equilibrium; time evolution; 
asymptotic Abelian. 

1. INTRODUCTION 

The dynamics of the X Y  model ~ 1) received much attention recently ~2) as an 
exactly soluble model with a nontrivial many-body interaction. It is 
known ~3) that the magnetization in the z direction shows a nonergodic 
behavior and contains an explicit "memory" function. However, a singly 
perturbed state of the system returns to equilibrium, ~4) which leads to the 
interpretation that the X Y  chain acts like a "heat bath" on the local 
impurity. A natural question arises in view of these results: H o w  big can 

1 Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan. 
2 Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan, and 

Clarkson College of Technology, Potsdam, New York 13676, USA. 

327 
0022-4715/83/0500-0327503,00/0 �9 1983 Plenum Publishing Corporation 



328 Araki and Barouch 

the "impurity" be with the return to equilibrium still taking place? It is the 
purpose of this note to shed light on this question. 

It is found that the system returns to thermal equilibrium if the 
perturbation is of a finite size, while this is not the case if the perturbation 
is of an infinite size (however small its size be in comparison with the total 
size of the system). This result is shown both by an explicit computation 
and by an application of a general theory, of an infinite system together 
with an explicit verification of the twisted asymptotic Abelian property of 
the time evolution (either on the whole algebra of observables or on a 
subalgebra, depending on the value of a parameter of the model). 

2. F O R M U L A T I O N  

We consider the algebra ~ of Pauli spin operators o~J),ofyJ),o} j) 
( j  = 1,2 . . . .  ). The XY model Hamiltonian for N sites is 

N - I  
H(o N) = J ~ [(1 + ~)o(J)(Y (j+l) "[" ( 1 -  "y)o(J)o (j+l)] (2.1) 

j = l  

The perturbation we shall consider is the external magnetic field on the first 
n sites given by 

He<n)= h ~ oj j) (2.2) 
j = l  

Here J and h are constants. 
We imagine that the perturbation H~ n) has been acting for t ~< 0 and 

we are having the thermal equilibrium state for 11(o N) + H~ n) at time 0, 
with the density matrix given by 

ON,n = Z~2exp(  - fl[ 11(o N) + He{n)]} (2.3) 

where Z g is the partition function defined by trsON, n = 1. ("trN" indicates 
the trace for Pauli spin matrices at the first N sites.) The expectation value 
of an operator Q in this state is given by 

< Q)N,n = trN(ON,nQ) (2.4) 

We shall be interested in the behavior of the expectation values under 
the time evolution without the perturbation, given by 

( Q(t)N~N,n = tr[plv.Q(t)N 1 (2.5) 

O( t)N= eitH~'N)ae--itH~N' (2.6) 

In particular, we focus our attention to the average magnetization per 
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impurity given by 

~ N , n =  n-' ~ (o(~J)( t)N)N,,  (2.7) 
j = l  

We investigate the behavior of this quantity in the following two cases. 
(A) First the thermodynamic limit N---) ~ is taken. Then the infinite 

time limit t ~ + oo is taken with n finite and fixed. 
(B) First the limit N ~ m with n = n N being a function of N tending 

also to infinity. (Apart from N >/n N >I 1 and l imu_~ n u = ~ ,  no restric- 
tion is imposed.) Then the infinite time limit t ~ m is taken. 

For the case (A), we have 

lim lim (Q( t ) )N , ,=  lim (Q)u,0  (2.8) 
t---~ oo N---~ ~ N - ~  

for arbitrary Q (independent of N), where ( Q)N,0 is the expectation value 
without perturbation H u and the thermodynamic limit on the right-hand 

n o (j) we have the result that the side exists. In particular, for Q = n -  Y,j= 1 z , 
average magnetization per impurity returns to its (unperturbed) equilibrium 
value. 

For the case (B), we have 

lim mt u . . . . .  lim mt N'N (2.9) 
N---) oo N---~ ~ 

for all values of 7, where the thermodynamic limit exists and is the same as 
the behavior of the time evolution of a single z-spin (say at the origin) in 
two-sided one-dimensional chain where the time evolution is by the two- 
sided XY-model Hamiltonian (infinitely extended) without the perturbation 
and the expectation is taken in the equilibrium state for the (infinitely 
extended two-sided) perturbed Hamiltonian. The right-hand side of (2.9) 
does not return to the equilibrium value as indicated in the Introduction. 
(Also shown in Section 7.2.) 

3. CONSEQUENCES OF A GENERAL THEORY FOR CASE A 
WITH 7 = 0 

In this section, we shall be using general results on equilibrium states 
of infinitely extended systems as formulated in the C*-algebra approach to 
quantum statistical mechanics of spin lattice systems. (For example, see 
Ref. 5.) 

For any element a in the C*-algebra ~ of Pauli spins in a one-sided 
infinite chain, we consider the time evolution given by 

at(a ) = lim eitH~N)ae--itH~N) (3.1) 
N - - ~  

where the limit is known to exist in the operator norm. (6,7) 
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Let O be the automorphism of 9/representing 180 ~ rotation of spins at 
all lattice sites around the z direction: O(o~ (j) = -O(x j ) ,  O(oy (j)) =oy(J), and 
O(a} j)) = o} j) for all j = 1, 2 . . . . .  Since H0 (N) is invariant under | the 
time evolution at commutes with O. 

In the next section, we establish the following twisted asymptotic 
Abelian property of a t when 7 = 0. (The "twisting" refers to the presence 
of O.) 

I .emma 1. For any a, b E 9/, 

lira [ [ O ( a ) a t ( b  ) - a t (b )a l l  = 0 if O(b) = - b (3.2) 

lim ][[a, a t ( b ) ] l l  = 0 if O(b) = b (3.3) 
t---> oo 

On the basis of this property, we obtain the following twisted version of a 
known result: (8) 

I .emma 2. For any factor representation Tr of 9 /o n  a Hilbert space 
~,~, 

w-lim ( ~ r ( a t ( a ) )  - w~,(~r(at(a)) fi  } = 0 if |  = a (3.4) 
t - - ~  

for any unit vector �9 E W ,  where ~ is the identity operator, w~(x) = (~, 
xq)) and w-lim denotes the limit in the weak operator topology. 

If there is a unit cyclic vector q~ such that q0 ~ w~ o ~r is O-invariant 
[i.e., q0(O(a)) = q0(a) for any a E N], then 

w-lim {qr(at(a)) - ep(%(a))~} = 0 (3.5) 
t--~ o0 

for any a ~ 91. In other words, 

lim { ( q ' , ~ r ( a t ( a ) ) ~  ) - qo(at(a)) } = 0 (3.6) 
t --). oo 

for any unit vector ,It EYr and any a E 9~. 

P r o o f .  If O ( a ) =  a, (3.3) implies that any weak accumulation point 
of 

~r (a , (a )  - we(at(a))~ (3.7) 

as t---~ ~ commutes with any element of ~r(9~) and hence is in the center of 
~r(9/)". By the assumption that ~r is a factor representation, the center is 
trivial and hence any weak accumulation point of (3.7) must be c~ with the 
constant c determined to be 0 by the following computation: 

c = w,~(c~) = lim ~o~,(qr(a,(a)) - w~(~r (c~,(a)))~) = 0 
t - - ~  

By the compactness of the unit ball of ~r(~)" relative to the weak operator 
topology, this implies (3.4). 
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If  there is a unit  cyclic vector  4) such that  qv = ~%, o 7r is 19-invariant, 
then there is a unique uni tary  opera tor  V satisfying V~r(a)rb = 7r(Oa)(I) a n d  
it satisfies V'r:(a)V*= ~(Oa). Thus  (9 can  be extended to ~r(~)"" |  
= VxV* for x E ~r(g[)". 

Consider  b E 2f satisfying |  = - b. Take  an accumula t ion  point  x 
of ~(o~t(b)) as t ~ oe. Since (9 commutes  with a t, 

VxV* = l im~(19(at~(b)} ) = - l im~r(at , (b))  = - x  (3.8) 

for  some net t~. On the other  hand,  (3.2) implies 
A 

19(y)x = xy (3.9) 
A 

for  ~ E ~r(~f) and  hence for  y E 7r(~)". Setting y = x* and  using 19(x*) 

= 19(x)* -- - x * ,  we obta in  

- x * x  = x x *  (3.10) 
Since xx* >1 0 and  x * x  >1 O, we obta in  x = 0. Hence  by  the same compac t -  
ness as before,  

w-l imi t (a t (a) )  = 0 = cp(a,(a)) (3.11) 

if 19a = - a, where the last equali ty follows f rom 

rp(a t (a) )  = q0(O{a t (a )} )  = q~(at(19(a)) ) = - q0(ott(a)) (3.12) 

Combin ing  with (3.4), we obta in  (3.5) because  any  a E 9~ is a sum a 
= a+ + a _  of a+_ = [a +_ 19(a)1/2 satisfying 19(a_+) = +a_+.  I I  

The  existence of the t he rmodynamic  limits 

q)(")(Q) = l im ( Q)N,n (3.13) 
N---> o0 

is known (Ref. 9 for any  finite-range interact ion in one dimension including 
the present  case, and  Refs. 10 and  11 for  more  general  one-dimensional  
system), and  it is the unique state satisfying the K M S  condi t ion at fl for  the 
t ime evolution 

a}")(a) = l i r n o e x p [ i ( H ( U ) +  H ( " ) ) t ] a e x p [ - i ( H ( S ) +  Hp(n))t] (3.14) 

Since (3.14) is an inner per turba t ion  of a t = a t  (0) by a relative Hami l to -  
n ian H r ~ g[, the unique K M S  state q0 (n) is given by  a vector  qb (n) [usually 
denoted as ~5(H(n))] in the cyclic representat ion space ~ (the G N S  
representat ion space) in which a cyclic vector  qb = ~b(o) E ~f '~ gives the 
state rp = q~(o).(]2) As the unique K M S  state for  at, which commutes  with 19, 
q0 is 19-invariant (because 99 o 19 is again  a K M S  state which must  coincide 
with the unique K M S  state qo) as well as a a t - invar iant  and  yields a factor  
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representation (as it is an extremal KMS state). Hence (3.6) implies 

lim lim ( Q(t)N}N,,  = lim l i m  (at(  O)}u,n = l i m  oig(n)(olt( O )) 
t---> oo N---> ~ t---> ~ t - - ~  

= lim ((b(n),Tr(at( O))O (')) 
t - - ) ~  

= l imcp(a t (Q)  ) = ~p(Q) 
t-~> oo 

Namely (2.8) is shown. 

. P R O O F  OF T W I S T E D  A S Y M P T O T I C  ABELIAN P R O P E R T Y  FOR 
THE CASE 7 = 0 

j -1  ] 
~ = I'[ (2ck Ck -- 1) (Cj + C7) (4.4) 

k = l  

l ~ j~ = [ I  (2c~ck - 1) i(cj - c7) (4.5) 
k = l  

The algebra g[ can be identified as the CAR algebra generated by cj and c7, 
j = l , 2  . . . . .  

The Hamiltonian 11(o N) is expressed as 
N - - 1  

H(o N) = ( - 2 J )  E [ctcj+L + et+lej + Y(ctc?+, + cj+lcj)] (4.6) 
j = l  

If we write e ( f )  = F~7=1 fnC, and c*(f) = ~ = l  f,c* for f =  (fl,  f2, �9 �9 . ) 
12, both series converge in norm and 

[ H(oN),c*(f) ] = ( - 2 J ) [  c*((UN + U~v ) f )  - Vc((UN - U } ) f ) ]  (4.7) 

[ H(oU),c(f) ] = ( - - 2 J ) [  TC*((UN -- U} ) f )  - c((UN + U } ) f ) ]  (4.8) 

where 

Uu(f l  , f2 . . . . .  f u , f u+~  . . . .  ) = (f2 . . . .  fu ,O,  fu+, . . . .  ) (4.9) 

U ~ ( f l , f =  . . . . .  f u , f N + ,  . . . .  ) = (O,f~ . . . . .  f N - , , f u + l  . . . .  ) (4.10) 

Let (J'/ 
cj = I-I ~ ~) (~ j) - i~ (4.1) 

k=l ] 

It satisfies the canonical anticommutation relations: 

{ej,ck} = O, {e j ,e~}  = 6j~ (4.2) 

where {A, B ) = A B  + BA.  The original operators are given by 

o} j) = 2c7c j - 1 (4.3) 
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We now specialize to the case of y = 0. (The general case later.) We 
have 

exp[iH(oU)t]c*(f)exp[--iH(oU)t] = c * ( e x p [ - 2 J i ( U  u + U* ) t ] f )  (4.11) 

and hence 

where 

at(e*(f) )  = c * ( e x p [ - 2 J i ( U  + U*) tJ f  ) 

u ( f , ,  A . . . .  ) = (A,  A . . . .  ) 

U*(f , ,  f2 . . . .  ) = (0, f, . . . .  ) 

Similarly (or taking the adjoint), 

a t ( c ( f ) )  = c (e 2J'( u+ ~*)/) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

Lemma 3. The spectral measure of U + U* is absolutely continuous. 

Proof, For any f = (fl ,  f2, �9 �9 �9 ) with fj = 0 except for a finite num- 
ber of j ' s ,  define the sine transform by 

OO 

f (s) = ~ fnsinns~ L2([O, Tr],(2/~r)ds ) ==- -1~ (4.16) 
n = l  

Then the closure ~ -  of the map f o f i s  known to be a unitary map of l 2 
onto J .  Furthermore 

Therefore, 
absolutely continuous spectrum. 

Corollary. For any f] and f2 in l 2 and for any real )~, 

lim ( 1,e &(U+ , oo-f v*)72) = 0 

[ ( U  + U*)f(s)]  = ~] fn(sin(n + l)s + s i n ( n - 1 ) s )  
n = l  

= 2(cos s) f (s) (4.17) 

U + U* is a multiplication operator of 2coss  and has an 

(4.18) 

Proof. 

where 

for some P E L~ 
follows. �9 

By the spectral resolution (U + U*) = f x  dE (x), 

( f ,  ,eiX(v+u*)tf2) = f ei ' d (x) (4.19) 

dt~(x) =-- ( f l ,  dE(x)f2) = O(x) dx (4.20) 

by Lemma 3. By the Riemann-Lebesgue lemma, (4.18) 
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Proof of  Lemma 1. This Corollary, (4.12), (4.15), and the canonical 
anticommutation relations imply (3.2) when a and b are creation and 
annihilation operators c*(f) and c(g). In view of the property O(c*(f)) 
= - c * ( f )  and O(c(g))= - c ( g ) ,  (3.2) and (3.3) for a general a and b 
follow. �9 

5. PROOF OF (2,9) 

The proof actually works for a general class of finite-range interactions 
and is based on a result in Ref. 9 which we first summarize. 

Let H[o k'q be given by (2.1) with sum o v e r j = k , k + l , . . ~  
H~ ~'q be given by (2.2) with sum over j =  k , k +  1 , . . . ,  l and H tk'tt 

H[k,tl = 111o k'q + __p , where k and l are integrers satisfying k < I and we now 
consider the Gibbs state for a two-sided chain: 

 k,l(x ) = 2~,, tr[k,t]( e x p ( -  flHt~"])x } (5.1) 

with 2~k, / defined by qok'Z(l) = 1. This limits 

epk'~176 = lim cp~'t(x) (5.2) 
l -~  co 

cp-~176176176 = lim lira cpk"(x) (5.3) 
k---> oo 1---> oo 

exist and the limits are uniform in the following sense. 

Lemma 4. Let 92([k, I]) be the algebra generated by o(J), j e [k, I] 
and x E ~([k, l]). There exist constants c I and c 2 independent of k, l, r, and 
x such that 

Iq0k,Z+~(x) - epk,~ < Ilxllc~e -c2r (5.4) 

- -  Ilxllc e - c = "  (5.5) 

States ep k'~ and q~-~'~ have the following exponential clustering 
property. 

Lemma 5. 91([k, l]C) be the C*-algebra generated by a (j), j ~ [k, l]. 
Let r > 0, N > l + r, - M < k - r. There exist constants d I and d 2 'inde- 
pendent of k , l , r , x  ~ 91([k,l]), y I ~ g[([l + r,N]) a n d y  2 E 91([- M , k  - r] U 
[l + r, N]) satisfying 

I~k 'N(Xy l )  -- ~ k ' N ( x ) ~ k ' N ( y l ) [  <~ d ~ l l x l l  [[y~lle -a2r (5.6) 

I~-M'N(xy2) -- eP-M'N(x)~-~'~(y2)I < dlllXll I[y2[le -d=r (5.7) 
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Due to the split 

/to E ,;J =  /0L ,J + (5.8) 

Hpt~"l = HpE~j-'I + Hfp j''l (5.9) 

with Wj = J { ( 1  + y)o(~J-l)O(xJ) + ( 1 -  o(J-I)o(J) y) y y ), and the uniform limit 

a}l'~l(x) = lirnooexp[/(HN(') + H ~ ' ) ) t ] x e x p [ - i ( H ~ ( ~ ) +  He("))t ] 

(5.10) 

[uniformly over the choice of N(n) >1 n], correlation across a boundary can 
be expressed in terms of an (explicitly defined) operator in 9I as follows: 

I . e m m a  6, There is an operator Ak,u, n such that 

( Q}N,. = (q 01'k (~ (~k ,N,n)(A~,N, .QA~,N, . )  (5.11) 

for all Q ~ 91([I, k]), where k < n < N and 

- 1  q0k,~v,'(x) = Zk,N,.trEk+1,N,(exp[--B(HEok+I'NI+ __pHI~+"'I)]x} (5.12) 

with q0k'N'"(1) = 1, 

c = sup I[A~,N,.II < ~ (5.13) 
k ,N,n  

and 

d(Ak,N,. ,91([ k - r ,k + r])) < b,e -b~r 

for some c o n s t a n t s  b I and b 2 > 0 independent of k, N, n where 

a ( A , ~ )  = inf(l[A - A'I[; A' ~ ~ )  

(5.14) 

(5.15) 

Let ~ be the one-step shift of the lattice to right given by 6(~ (j)) 
= ~r(j+ 1). It is an isomorphism o f  91([k, l]) onto 91([k + I, l + 1]) and an 
automorphism of the C*-algebra 91 generated by all a(J), - oe < j  < oe. 
Then 6-"at6 n is the time translation of the X Y  model on the semiinfinite 
interval [1 - n, oo) and a t = lim,__,~ 8 - 'a f t  ~ is the time translation for the 
X Y  model on the two-sided infinite chain 7]. 

On the basis of the preceding three lemmas, we can prove the follow- 
ing: 

kemma 7. If N(n)  >1 n and N ( n ) - ~  oe as n ~ oe, 

lirno~ ~?( ' ) ' "  = cp- ~'~(~,(o}~ (5.16) 
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R e m a r k .  We may also write 

lim ~f f . . (N)=  lim ~ff(")'~ (5.17) 
N---> ~ n - ~  

provided that n ( N ) ~  oo. Since we may take N(n)  = n or n ( N )  = N and 
the limit is independent of N ( n )  or n(N) ,  we obtain (2.9). 

Proof.  Given e > 0, let r 1 be such that 

bl e-bzrl < E/(12c) (5.18) 

By Lemma 6, there exists A~:v. E 9A([k- r l , k +  rl] ) satisfying llAZ,N,.I[ 
~. t ' "-- b2r I t -~ c and IlAk,u,~- Ag,N,n][ < ble . (Take p(Ak,N,.) for a conditional 
expectation p from 91 onto 9A([k - rl, k + rl]). ) 

Let Q ~ 9A([i, j]), 1 <. i <<. j and II O II = 1. Then 
1 k." ,-~Att ~ l( Q)N, .  - r [ ~g k,N,.)l < e /6  (5.19) 

as l o n g a s j <  k - r  1 - 1  a n d k + r  l < n <  N, where 

" ~k 'N 'ng iA '  "~*A' ~ Ak,w,~ = v tt k,N..J k,W..) ~ 9 1 ( [ k -  rl k])  (5.20) 

satisfies IIALN,.II ~ c 2 and [by substituting Q = 1 into (5.19)] 

l1 l k ' A "  ., - cO, t *,N,.)I  < e/6 (5.21) 
Let r 2 be such that 

d,e -u2r~ < e / (6c  2) (5.22) 

By Lemma 5, i f j  < k -  r 1 - r 2 

,, , lg,A,, "~ e /6  (5.23) [@'k(QAk,w,,) - q)"k( Q)~ " t k,W,,)l < 

Hence (5.21) and (5.19) imply 

[( Q)u, ,  - rP~'k( Q)] < E/2 (5.24) 

as l o n g a s j < k - r  l - r  2 a n d k + r  1< n < N .  
By the proof of the convergence of the time translation like (5.1) and 

(5.10), there is an l and Qj E 91([j - l , j  + l) for given t such that I[ Qjll <<- 1 
and 

liar(~ j)) - QjII < e/16 (5.25) 

If 1 < j - l , j + 1 4 k - r ~ - r  2 - 1  a n d k + r ~ < n < N ,  then 

(O/ '(Oz(J '))  N , n -  ~)l 'k(oLt(o(J))) < 5 ' / 8  (5.26) 

By the lattice translation, we have 

fP l,k ( a t  (13z(j))) = f p l - j , k - j  (6  --Jat6J (Oz(O))) (5.27) 
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Let r 3 be such that  

Cl e-C2r3 < , / 1 6  (5.28) 

By Lemma 4 and (5.25), 

[~l-j'k-J(~-JoltdJ(o(O))) -- ~-~'~ [ < 3r (5.29) 

if 1 - j  < - 1 -  r 3 and k - j / >  l +  r 3. Let j0 be such that ]lS-JafiJ(o} ~ - 
~t(o~(~ < e /16  f o r j  ~>J0. Then (5.26), (5.27), and (5.29) imply 

[(at(o}J))) N. -- ep-~'~(d~t(o}~ I < 7 , / / 8  (5.30) 

if max( j  o, 1 + l + r3) ~< j ~< n -- max(l  + r3, r I + r 2 + 1) - r I and n < N. 
Let n o be such that 

[ m a x ( j o , l + r 3 ) + r  l + m a x ( l + r 3 , r  l + r 2 + l ) ] / n  o < ` / 1 6  (5.31) 

Then for N > n >/ n o, we obtain 

Imff'" - ep-~176176 I d e  (5.32) 

Hence (5.16) holds. �9 

6. CASE OF A GENERAL ,/WITH LOCALIZED PERTURBATION 
(n < 

We shall use the description of the canonical ant icommutat ion rela- 
tions in terms of a self-dual CAR algebra. (13) For f @  g* ~ l 2 @ l~' -- L, 

B ( f  @ g*) =-- c*( f )  + (c*(g))* (6.1) 

where l~ is the dual Hilbert space of l 2 and g* is the functional g*( f )  = (g, 
f ) .  If we write F ( f  ~ g*) = g @f*, then B(h)* = B(Fh). We also have 

{ B(hl)*,B(h2) ) = ( h  I ,h2) 

where (fl  G g~', f2 @ g~') = ( f l ,  f2) + (g2, gO. We shall identify l~' with 
12[(gl, g2 . . . .  )* with (g l ,  g2 . . . .  )] and L = l 2 (~ l z with l 2 | C 2. [Then 
c*(g)* = c(g).] The Hamil tonian H(o N) satisfies (4.7) and (4.8) and hence 

lim [ H(oN~,B(h) ] = B ( - 2 J K v h )  (6.2) 
N---> ~ 

u + u*, u*) ] 
- y ( U -  U*), - (U+ V*)] (6.3) 

U(fi  , f2 . . . .  ) = (f2,  f3 . . . .  ) 
(6.4) 

U*(f, , f2 , f3  . . . .  ) = (0,/1 ,f2 . . . .  ) 



338 Araki and Barouch 

We note that K~ = Kv and = - / ~ r .  Since Kv is bounded, it immedi- 
ately follows that 

at(B(h)) = lim eitH6N~B(h)e-itH6~= B(e-2iSKJh) (6.5) N--~ o~ 
The asymptotic property of a t for large t is determined by the spectral 

property of Kv given by the following: 

I.emma 8. The dimension of kerKr is 1 and Ky has an absolutely 
continuous spectrum on (kerKv) • where kerKv denotes the kernel of Kr 
(i.e., the eigenspace belonging to an eigenvalue 0). 

The space ker K v is spanned by 

(fv,o (9 fv,o) if 0 < 7 < 1 and by (fv,o @ -fv,o) 

if - l  < 2/ < O where 

(fr,0)2n = 0 (6.6) 

= (fe,e)2n_l= (1-17[ ) "-I (6.7) 

Proof. Let 

Then V is unitary and 

Thus 

with 

V=2-1/2(  11 -11) 

(o ~ 
VK• V* = A~ 

A~= U +  U * - 7 ( U -  U*) (6.9) 

0) 
VK2V * = ~ * 

AvA Y 

A*A~ =(1 - y2)I U 2 + (0*) 2 ] + (1 + "f)(OU* + U ' V )  + 2y[ U,U*] 

(6.10) 

-- 2(1 + 72 ) + (1 - 72)[ U 2 + (U*) 2 -  aP 1 (6.11) 

a = (1 - 7)/(1 + 7) (6.12) 
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where P is the one-dimensional projection on the vector (1,0, 0 . . .  ) and 
we have used the identities UU* = 1, U* U = 1 - P. 

Let l 2 =/2(N) =/2,0 @ 12,e where /2,o--/2(2N- 1) and /2, e =/2(2N) are 
identified with l 2 such that f = f0 (Df~ with (fo), = fZn-1, (f~), = fzn" The 
two subspaces /2, 0 and 12, e are invariant under A * A v ,  the restrictions of 
A * A  v to /2o and 12e are equivalent to 2(1 + 3, 2) + (1 - 72)(U+ U* - a P )  
and 2(1 + ~2)+ (1 '-- 72)(U + U*). In Section 4, we have already seen that 
U + U* has an absolutely continuous spectrum (Lemma 3). 

To study the spectrum of U + U* - aP,  consider the case 0 < ~, < 1, 
i.e., 0 < a < 1. Set 

L = (1 + aU*)(l  + aU)  = 1 + a ( U +  U*) + a2U*U 

= 1 + a 2 +  a ( U +  U * -  aP)  (6.13) 

W =  L-l/Z(1 + aU*) (6.14) 

Note that (1 + a U*) and hence L have bounded inverses due to ]] a U*[I = a 
< 1. Hence W is unitary. Since L commutes with U + U* - aP,  

( U  + U* - a e ) W =  L - l / ~ ( U  + U* - aP) (1  + aU*) 

= L - ' / 2 ( l  + a U * ) ( U +  U*) = W ( U +  U*) (6.15) 

Therefore U + U* - aP  has the same spectrum as U + U*. Thus, Av Av 
has an absolutely continuous spectrum if 0 < y < I. (In particular, kerAv 
= 0.) 

Let A~ = viAl, I be the polar decomposition of Av. Since kerAv = 0, v is 
isometric and AvA*  = v A v A v v .  Therefore the spectrum of AyA*  on 
(kerv*) • is the same as the spectrum of AvA~,,* i.e., an absolutely continu- 
ous spectrum. In addition AyA~ has an eigenvalue 0 on kerv* = kerA*. 
The eigenvalue equation A ~ f  = 0, which is equivalent to ( U  + a U * ) f  = O, 
can be solved directly and yields the eigenvectors fv,0. Thus the lemma is 
proved for the case 0 < y < I. 

Since A _v - Av, the case 0 > ~, > - 1 is exactly the same as above if 
(-I  l ',) is used instead o f  (l, _ 11) in V. [] 

If we substitute the above Lemma in place of Lemma 3 in the proof of 
Lemma 1 discussed in Section 4, we obtain the following. 

L e m m a 9 .  A s s u m e - l < y <  1 , , iv  ~0. 
(1) The fixed point algebra 

~/~  = { a E d : at(a ) = a for all t} (6.16) 

is a two-dimensional Abelian algebra generated by s = c*(f~,o) + c c(fv,o) 
(e = sign,/), which satisfies O(s)= - s  and s2= e[[fv,o[[2~. 
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(2) The twisted commutant 

( d ~ ) t c =  (a  E d :O(a)s  = sa} (6.17) 

together with d ~ ,  algebraically generate J .  
(3) For a E d and b ~ (J~)t~,  (3.2) and (3.3) hold. 

Proof. Let ~1 ~ C~ + Cs and ~2 be the C*-subalgebra of J gener- 
ated by B(h), h E (KerKv) • Any element Q in the subalgebra B of 
algebraically generated by ~1 and ~2 can be written as Q = Qo + sQ~ with 
Q0, Q1 ~ ~2.  Then 2Q1 = cllf~,,oll-2[sQ- e( Q)s]. Hence any norm limit 

of such Q must be of the same form. Namely ~ l  and ~2 algebraically 
generate J .  The same formula shows for Q ~ (~ l )  tr that Q1 = 0. Hence 
~2 = ~{~. Again the same formula and the cornmutativity of O with a t 
show that ~ is algebraically generated by ~ and ~ = ~2  A d ~. 
Lemma 8 proves (3.2) and (3.3) for a ~ zg" and b ~ ~2.  Since the trace 
state on ~ is faithful, O-invariant (invariant under any automorphism), 
factor state, (6.20) in the next Lemma 9, which is a consequence of (3.3), 
implies that ~ = C1 (due to o~t(a ) = a for a ~ ~ ) .  Therefore ~ "  = ~ .  

[] 

For any factor representation ~r of 9~ on a Hilbert Lemma 10. 
space ~(,P, 

w-lira {~r(at(a)) - we(~r(c~t(a))l)} = 0 (6.18) 
l---> c~ 

for any a E ~c  satisfying Oa = a and for any unit vector qb ~ ~ .  
If there is a unit cyclic vector qb such that r = ~%t, 7r is O-invariant, 

w-lim {0r(at(a)) - rp(at(a))l } = 0 (6.19) 
t---~ oc  

for any a E 9~ C. In other words 

lim {(qs, o~,(a)~I,) - r = 0 (6.20) 
t---~ oo 

for any unit vector 'Is @ ~ and any a E ~[fc y "  

We are now ready to prove (2.8) for y ~ 0. 

Proof of (2.8). Let Q = Qo + sQl with Qo, Q1 ~ ( ~ ) t c .  As before, 
q)(x) = limN_~<X)u,0 is O-invariant and gives rise to a factor representa- 
tion ~ with a cyclic vector (I) satisfying ~%(~z(x)) = q)(x). The state q)(")(x) 
= limN_,~ (X)N,, is also O-invariant and is given by a vector ~ in the 
same space. Thus Lemma 10 implies 

lira ~)(")(c~( Q )) = ~(Qo) + (/)( Q1)q)(")(s) (6.21) 
t - ->  oo 
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By O-invariance of q,(') and O(s )=  - s ,  we obtain ~(")(s)= 0. Thus 

lim lim ( Q(t)u)U,, = q,(Q0) (6.22) 
t ---> oo N-~ov 

Let Q1 = QI+ + Q I - ,  where Ql+ = [Q1 -+ O ( Q 0 ] / 2  belongs to ( ~ ) t ~  
and satisfies | Qt+_ ) =  -+ Ql_+. By O-invariance of g>, we obtain O(sQl + ) 
= Q .  

Since at(s ) = s, the KMS condition for q, implies O(sQl_ ) = ep( Q1- s) 
=qff(sQl_ + Ql_S)/2) ,  which vanishes due to (6.18) and O ( Q I _ ) =  
- QI - .  Hence q,(Q) = q)(Q0). Therefore (6.23) implies 2.8). �9 

7. THE EQUILIBRIUM STATE ~p FOR THE X Y  MODEL 

7.1. Unperturbed Case for One-Sided Infinite Chain 

We use the same notation as the preceding section. The state cp(Q) 
~limN_~oo(Q)u,  o is the unique (a t, f l ) -KMS state for a t (B(h ) )=  
B(e-aJitK, h). The quasifree state with the following two-point function is 
easily seen to satisfy the (a t, B)-KMS condition and hence is ep: 

~(B(Fh,)B(h2)  ) = (h~ ,(1 + e 2J#K~ )- lh2)  (7.1) 

(The commutation relation and positivity determine the normalization.) 
Here the quasifree state 9~ is defined by the following properties: 

c p ( B ( h , ) . . .  B(h2,_~) ) = 0 (7.2) 

~ ( B ( h , ) .  " " B(h2,)) = ~] f i  cp(B(he(j))B(hp(j+,))) (7.3) 
P j = I  

where the sum is over all permutations P of 1 . . - 2 n  satisfying P(j)  
< P ( j + n )  for all j =  1 . . . .  ,n  and P ( 1 ) < P ( 2 ) - . .  < P ( n ) .  For the 
special choice Q = n- l~ j=lo~  j), we have the following situation. The 
Hamiltonian 11(o N) is invariant under the automorphism 

O'(a) --= lim J~ a J~ (7.4) 
m--> oo j =  / j =  / 

which changes o~ (~ and o~ (~) to - o ~  (k) and -o~  (~ while leaving Oy (~) 
invariant. Hence [o t, O'] = 0 and the unique (at, f l)-KMS state cp must be 
O'-invariant. Since O'(a jj~) = - ~J~, this implies 

lira lim ~ U , , =  n - '  ~ cp(o~ (j)) = 0 (7.5) 
t-->oo N--~oo j =  1 
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7,2. Two-Sided Infinite Chain 

Using the same notation as before, 

c~t(a) = lira exp(itH[o-U'Ul)aexp(--itH[o -u'ul) (7.6) 
N - - ~  o o  

is described by 

~,(B(h)) -- B(e-2Jit~h) (7.7) 

where/(v i s the  same as K v of (6.3) except for the replacement of U and U* 
by U and U* defined by 

A 

( U ' f )  = f~+ l ,  ( U ' f )  =f~_ 1 (7.8) 

for f = ( . . .  f_  1, fo, fi . . . .  ) E 12(71), Here the algebra ~ is generated by 
the spins g(J), j - - . 0 ,  + 1,_+2 . . . .  on the two-sided infinite one-dimen- 
sional chain, and Kj is acting on/2(g)  fi)/2(71). 

Since 

IH[e-N'Xl ,B(f~g*)]=ZB(hP(U)f*--hp(N)g) (7.9) 

with p ( U f =  ( . . .  0, f_N . . . . .  fu, 0 ' ' "  ), 

~P)(a)-~ lim eit~t'~'N~ae-itu'N'~ (7.10) 

can similarly be described by 
A 

~}e)(B(h)) = B(e 2it(-sr~+hs)h) (7.1 1) 

�9 = (0- l )  on where h is the coupling constant in H e and S i o 12(~ ) �9 12(~ ). The 
unique (ei~P), fl)-KMS state qo-oo,oo is the quasifree state with the following 
two-point function: 

~-|176176 = (h i , (1  + e2~(J~-hs))-'h2) (7.12) 

Hence, the expectation value of 

clt(o~ ~ = 2B(e-2Ji'g~h(~ (~ - 1 (7.13) 

with h (~ = 0 ~3 f(o) and f w) = 8, ~ is given by 

cp-~176176176176 = (h(~ - 1)h (~ (7.14) 

O = e2JitI~(1 + e2B(J l~-hS)) - le -2J i t l~  (7.15) 
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^ 

(a) Case "F = O. In this case K o and S commute.  Thus D is inde- 
pendent  of t and 

lim lim Nt N'N= (p-~,oo(~o)) 
t - ~ . ~  N---~ oe 

= (h (~ {1 + exp [2f l ( J /~  0 - hS)]}- 'h  (~ 

= ( f ( ~  U * ) - h ) ] } - l f  (~ (7.16) 

This is a strictly decreasing function of fih and hence its value for h v ~ 0 is 
different from the value for h = 0 for fl =/= 0. (h is the negative of the 
external magnetic field.) 

By the spectral resolution of U, its explicit expression can be easily 
worked out: 

lira lim ~ N,N_ 1 ,'2,, 
, ~ N - - ~  --~Jo { l+e I - f l ( 4JcosO-2h) ] } - ' dO-1  

= ~2~r f02'~tanh[ f l ( 2 J c o s 0  - h)]dO (7.17) 

(b) 
the unitary operator  U, we have 

" L2,,( 
Kv = 2 o3cos0 - 7o2sinO)dE(O ) (7.18) 

with o2 = (0-~) and o 3 = S = (0 ~ _ 0) on/2(77) ~/2(?7). Let 

k(O)=[(2h-  4 J c o s 0 )  2 + y2(4JsinO)2] '/2 (7.19) 

n o = (O,k(O)-14JysinO, k(O)-l(2h - 4 J c o s 0 ) )  (7.20) 

then (~ .  no) 2= 1 and 

2~r - i l k ( 0 ) )  (1 + e2B(Jl~-hS))-l=fO [(1 + e -1(1 + ~r-no)~2 

+ (1 + ePk(~ -- a .no)~2 ] dE(O) 

= L  2,,(1 + ~ .  n0tanh[ fik(O)/2]}dE(O)/2 (7.21) 

The vector n o can be decomposed  as n o = n'o +nb' with n~ proport ional  to 
(0, - Y sin 0, cos 0) while n~' is orthogonal to (0, - 7 sin 0, cos 0). When  (7.21) 
is substi tuted into (7.15), the term ~r. n~ commutes  with e itr~ and becomes 

Case 7 ~ 0 .  By the spectral decomposi t ion U =  feZ~ of 
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independent of t, while the term a.n~' acquires the time dependence 
exp[8Jit(o3cosO- yo2sin0)], which vanishes in the limit t o  oe due to the 
Riemann-Lebesgue Lemma. Hence 

lim lim ~ff,N_ 1 fo2'~m(O,h)dO (7.22) 
t ---~ oo N - ~ o o  2~r 

m (0, h) = - (n~)3tanh [ flk (0)/21 (7.23) 

The third component of the vector n~ is given by 

(n~)3 = k (0) - 1(cos20 + y2sin20 ) - l[ (2h - 4J  cos 0 )cos 0 - 4JTZsin20 ] cos 0 

(7.24) 

Thus limt~oo limN~o o ~U,U is an analytic function of h and 7. Since it has a 
nontrivial dependence on h for Y = 0 its value for a generic h is different 
from its value for h = 0 (which is 0) for any given 7. This proves the 
assertion for case (B) with a general V. 

8. D I S C U S S I O N  

Although the details of our computation depend on the specific model 
under consideration, our method is applicable to any model, for which 
some type of asymptotic Abelian property can be proved. Then the return 
to equilibrium for a finite impurity follows from a general argument. 

In the present example, the asymptotic Abelian property does not 
hold, but we prove a twisted version of such a property (usually found for 
Fermion algebras) and we presented a twisted version of the general 
argument. 

The conclusion for impurity of an infinite size is also of a general 
nature for a one-dimensional system, where the surface effect is of a finite 
range and hence most of the impurity spins (except those near the bound- 
ary of the impurity) are in the perturbed state (at t = 0). Hence after the 
limit N ~ o e  with n(N)~oo is taken, the average magnetization of the 
impurity is the same as the expectation value of the spin (at any point) in 
the uniformly perturbed equilibrium state of the two-sided finite chain, with 
the unperturbed time evolution of the same two-sided infinite chain. Thus 
the problem reduces to the case of uniform perturbation over all lattice 
sites, in which case the return to equilibrium is not to be expected in 
general. 

A by-product of our investigation is about the asymptotic Abelian 
property. It is often used in general axiomatic arguments but it is hard to 
verify in individual cases. It certainly fails for "classical interaction" (i.e., 
the case where the interaction potential is taken from an Abelian subalge- 
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bra of a). In the present case, the asymptotic Abelian property does not 
hold, although a twisted version holds for ~, = 0. Even the twisted version 
does not hold for 7 v a 0, although it holds for a (large) subalgebra. 

In the present case, the twisted asymptotic Abelian property is proved 
on the basis of the Riemann-Lebesgue lemma. For local observables, the 
time dependence of the twisted commutator is of the order of It[ -1/2 in 
general due to the stationary point for cos s (at s = 0 rood ~r) and hence the 
Ll-asymptotic Abelian property does not hold even in the twisted version. 
This It I-1/2 dependence seems to be of a general nature for a diffusion in 
one dimension. 

Emch and Radin (14) have given a C*-algebraic analysis of the X Y  
model and concluded the return to equilibrium. The general background of 
their argument is the same as the present one. They treat the X Y  model on 
the two-sided infinite chain, in which there are no nontrivial observables 
invariant under the time evolution, in contrast to our case for 7 v a 0. Their 
conclusion is somewhat more restricted because they use the asymptotic 
Abelian property of the even subalgebra (the 0-invariant elements of 91) 
rather than a property of the whole algebra. 

NOTE ADDED IN PROOF 

It has been brought to our attention that D. W. Robinson studied the 
twisted asymptotics of similar systems. 
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